
CONCERNING THE FORMULATION OF THE IRREVERSIBILITY
PRINCIPLE IN LOCALLY NONEQUILIBRIUM THERMODYNAMICS

A. I. Shnip UDC 536.7

It is shown that in the existing locally nonequilibrium thermodynamic theory there are a number of paradoxes
that can be interpreted as an indication that the used formulation of the second law of thermodynamics is in-
sufficiently complete. An additional thermodynamic postulate allowing one to remove these paradoxes and
having close analogies in other thermodynamic approaches is suggested.
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In one of his last works devoted to the most urgent problems of heat and mass transfer [1] Aleksei Va-
silievich Luikov placed particular emphasis upon the importance and potential for the then new trend of research called
"nonlinear thermomechanics." This term is understood to refer to the region of investigations in which, based on new
approaches of continuum mechanics and locally nonequilibrium thermodynamics, it was possible to construct thermo-
dynamically consistent models of media with complicated properties such as media with memory, media with internal
variables of state, micropolar media, etc. Approximately at that time he pioneered research work in that area at the
Heat and Mass Transfer Institute. After the demise of A. V. Luikov, investigations along these lines were continued
under the guidance of V. L. Kolpashchikov, by A. A. Baranov, N. A. Migun, S. Yu. Yanovskii, V. T. Borukhov, and
by the author of the present paper, in which some recent results of research in this field are given.

In the present article, the problem on the necessity of refining and supplementing the formulation of the sec-
ond law of thermodynamics in the so-called entropy-free form is investigated. Earlier we have ventured a paradox that
there may exist increasing temperature waves in the linear theory of heat conduction with memory that can be inter-
preted as an indication that the existing formulation of the second law does not exclude physically inadmissible situ-
ations [2]. Below it is shown that there is an analogous paradox also for electromagnetic waves in equilibrium
dielectrics with memory. To overcome these difficulties of the theory, an additional thermodynamic postulate is sug-
gested which is formulated as the requirement of the satisfiability of the Clausius property (see [3]) relative to a cer-
tain additional thermodynamic action. One further motivation of this postulate is that the additional thermodynamic
potential, whose existence follows from this postulate, is in many respects analogous to the dissipative potential,
whereas the postulate itself is analogous to the universal evolution criterion introduced by Prigogine with coauthors
[4]. In the concluding part of the article it is shown that the indicated additional postulate makes it possible to prove
the impossibility of the existence of increasing electromagnetic waves in equilibrium dielectrics with memory, as well
as excluding the conterexample showing the possibility of increasing temperature waves.

1. Unificaton of Representation of Various Thermodynamic Systems. It will be shown in this section in
which way various specific thermodynamic systems can be represented universally and, consequently, embedded in a
certain unified formal scheme. Based on this scheme, a generalized abstract thermodynamic theory is then constructed.

The two most widely used (in contemporary thermodynamics) formulations of the second law date back to
two classical formulations of the nineteenth century:

a) in each cyclic process the reduced heat integral is nonpositive, i.e.,

� 
dQ
θ

 ≤ 0 ; (1.1)
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b) for any process the following inequality holds:

∫ dQ
θ

 ≤ S2 − S1 . (1.2)

The thermodynamic approach based on the contemporary variant of the formulation of (1.1) belonging to Clau-
sius is usually called entropy-free. If the thermodynamic system is a continuum, then the reduced heat integral can be
represented in a local field formulation, and then inequalities (1.1) and (1.2) are reduced to the following form [5–9]:

� ⎡⎢
⎣
− 

1
ρ

 div ⎡⎢
⎣

q
θ
⎤
⎥
⎦
 + 

r
θ
⎤
⎥
⎦
 dt ≤ 0 , (1.3)

η (t2) − η (t1) ≥ ∫ 
t1

t2

 ⎡⎢
⎣
− 

1
ρ

 div ⎛⎜
⎝

q
θ
⎞
⎟
⎠
 + 

r
θ
⎤
⎥
⎦
 dt . (1.4)

The last inequality can be presented in differential form (the Clausius–Duhem inequality):

η
.
 (t) ≥ − 

1
ρ

 div ⎡⎢
⎣

q
θ
⎤
⎥
⎦
 + 

r
θ

 . (1.5)

From here on the dot above the symbol denotes the substantive time derivative.
We will consider several examples of thermodynamic systems for which the first law of thermodynamics (the

energy conservation law) is represented as follows:
a) a nondeformable heat-conducting body

e
.
 = − 

1
ρ

 div q + r ; (1.6)

b) a deformable heat-conducting body

e
.
 = − 

1
ρ

 div q + tr (SF
.
) + r ; (1.7)

c) a nondeformable nonconducting dielectric body with an electromagnetic field [5]:

e
. = 1

ρ
 D
.
⋅E + 1

ρ
 B
.
⋅H + r . (1.8)

We will define r, e.g., from (1.7) and substitute into (1.3). As a result, having introduced the inverse absolute
temperature ϑ = 1 ⁄ θ and its gradient in spatial variable g = grad ϑ, we obtain

� ⎛⎜
⎝
e
.
ϑ − ϑ tr (SF

.
) − 1

ρ
 q⋅g⎞⎟

⎠
 dt ≤ 0 , (1.9)

e.ϑ − ϑ tr (SF
.
) − 1

ρ
 q⋅g ≤ η

.
 . (1.10)

Introducing, into (1.10), a new thermodynamic potential Φ:

Φ = eϑ − η , (1.11)

and adding to (1.9) the identity
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� (e 
.
ϑ) dt = 0 , (1.12)

we represent (1.9) and (1.10) in the form

� ⎛⎜
⎝
eϑ
.
 + ϑ tr (SF

.
) + 1

ρ
 q⋅g⎞⎟

⎠
 dt ≥ 0 ; (1.13)

− Φ
.
 + eϑ

.
 + ϑ tr (SF

.
) + 1

ρ
 q⋅g ≥ 0 . (1.14)

We will consider the space S = �(�) × � × �. From its definition it follows that the elements of S are the
triplets γ = �T, a, λ� consisting of a tensor, vector, and scalar. If γ1 = �T1, a1, λ1� and γ2 = �T2, a2, λ2� are two ele-
ments of S, then their scalar product and norm |⋅| in S will be defined as follows:

�γ1, γ2� = tr (T1T2) + a1⋅a2 + λ1λ2 ,   ⏐γ⏐ = �γ, γ�1 ⁄ 2 . (1.15)

Then, if for each material point we introduce the time function

σ = ⎧⎨
⎩
ϑS, 1

ρ
 q, e⎫⎬

⎭
   ш   ε = �F, g

_
, ϑ� , (1.16)

where

g
_

 (t) = ∫ 
−∞

t

g (s) ds , (1.17)

then inequalities (1.13) and (1.14) can be written in the form

� �σ, ε
.
� dt ≥ 0 , (1.18)

�σ, ε
.
� ≥ Φ

.
 . (1.19)

In the same way, with the aid of analogous transformations of the thermodynamic systems introduced above
under items a) and c) (see (1.6), (1.8)), both formulations of the second law can be presented in the form of (1.18)
and (1.19), where

a) S = � × � ,   σ = ⎧⎨
⎩

1
ρ

 q, e⎫⎬
⎭
 ,   ε = �g

_
, ϑ� ; (1.20)

b) S = � × � × � ,   σ = ⎧⎨
⎩

ϑ
ρ

 B, ϑ
ρ

 D, e⎫⎬
⎭
 ,   ε = �H, E, ϑ� , (1.21)

In the last case, the thermodynamic potential is

Φ = eϑ − η − ϑB⋅H − ϑD⋅E . (1.22)

The possibility of such a unified representation of various thermodynamic systems is used as the basis for the formal-
ism employed in what follows. Thus, corresponding to the below-introduced notions of configurational space, configu-
rational trajectory, and trajectory of generalized stress are the above-defined space S, time function ε(t), and time
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function σ(t) in each of the three considered specific cases, respectively. At the same time, this formalism can describe
a great number of other physical systems.

2. Thermodynamic Theory. Any thermodynamic theory of continua of the type of the above-considered ex-
amples, in order to be closed, must be supplemented, in addition to the indicated relations and conservation laws, by
the so-called constitutive or material equations that assign the way in which dependent variables are defined in terms
of independent ones and thus define the medium properties. In the thermodynamics of irreversible processes [4] these
equations are assigned by linear relations between current values of thermodynamic fluxes and forces, whereas the
function of state for entropy on the basis of the principle of local equilibrium for nonequilibrium states is taken the
same as for equilibrium ones. The thermodynamic approach accepted here does not use the principle of local equilib-
rium and, as is seen from what follows, the entropy (or any other thermodynamic potential expressed in its terms)
does not coincide in equilibrium and nonequilibrium states.

In all of the foregoing cases independent variables are grouped into the variable ε (generalized configuration),
whereas dependent variables with account for the normalization conditioned by the form of the reduced heat integral
are grouped into the variable σ (generalized stress).

The most universal form of constitutive equations follows from the assumption that the values of dependent
variables at the current time instant are defined not only by the values of independent variables at the current instant,
but also by their prehistory (the causality principle). This is the so-called model of media with memory, which is the
most general means of assigning locally nonequilibrium systems [6, 7]. In this case, since the concrete dependences on
prehistories represent functionals of the type of convolutions, then by integration by parts they can be represented in
terms of the dependence of their time derivatives on prehistories (differential histories). For reasons of convenience and
compactness of basic relations we represent this dependence precisely in terms of differential histories.

In a generalized form the thermodynamic system is defined by a constitutive equation that assigns the gener-
alized stress σ in terms of the trajectories of generalized configuration ε(t):

σ (t) = σ̂ (ε (t), ε
.  t) , (2.1)

where ε
. t(⋅) is the differential history of generalized configuration defined as ε

. t(s) = 
dε(t − s)

dt
. Here σ and ε are vectors

from the abstract vector configurational space S with the scalar product �⋅,⋅� (1.15) and σ^  is an ordinary function of
the first argument and a functional of the second. If on a set of differential histories � we assign the norm || ⋅|| , for

example, as || ε
. t ||  = ∫ 

0

∞

ε
. t (s)χ(s)ds (here χ(s) is the integrable positive monotonically decreasing function of the influ-

ence), then for the functional σ^  we can define the notions of continuity, differentiability, and of Frechet derivatives
[6, 7] over the normalized space �.

Thus, for example, for case a) from the above-listed examples (see (1.6), (1.20)) the constitutive equations of
the form of (2.1) will be written as

q (t) = q̂ (ϑ (t), g
_.  t

, ϑ
. t) ,   e (t) = ê (ϑ (t), g

_.  t
, ϑ
. t) , (2.2)

where ϑ
.

t(s) = 
d
dt

 ϑ(t − s) is the differential history of the inverse temperature and the remaining histories were deter-

mined analogously. In (2.2), q^  and e^  represent ordinary function of the first argument and functionals of two latter
ones. These relations describe the model of heat conduction with memory that possesses hyperbolic properties of the
propagation of heat — the model suggested by Gurtin and Pipkin in [8].

Analogous relations can be cited for the remaining two examples. For the constitutive equations of the form
of (2.2) in the below-expounded theory of thermodynamic systems with memory there corresponds the constitutive
functional (more precisely, vector-functional) of generalized stress (2.1).

We will consider the generalized theory of thermodynamic systems with memory set out in [3, 9] in a some-
what less formalized treatment.
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In the standard entropy-free formulation ([9] postulate P1) in a less formal form the second law can be pre-
sented as follows:

P1. For any κ > 0 there can be such σ > 0 that for all the trajectories ε(⋅) and time instants t1 and t2 such that
[|ε(t2) − ε(t1)|2 + || ε

. t2 − ε
. t1 || ]1 ⁄ 2 ≤ δ the following inequality holds:

∫ 
t1

t2

�σ̂ (ε (t), ε
.  t), ε

.
 (t)� dt ≥ − κ . (2.3)

This postulate is a certain generalization of formulation (1.18) needed because of the fact that for media with
memory there exist very little strictly closed processes; therefore, speaking informally, it is required that for approxi-
mately closed processes the reduced heat integral (thermodynamic action) could be approximately nonnegative.

From this postulate follows, as the prerequisite condition of its satisfiability [3, 9], the existence of the ther-
modynamic potential ψ^ (ε(t), ε

. t) such that

∫ 
t1

t2

�σ̂ (ε (t), ε
.  t), ε

.
� dt ≥ ψ̂ (ε (t2), ε

.  t2) − ψ̂ (ε (t1), ε
.  t1) . (2.4)

If ψ^  is differetiable, then (2.4) can be written in a differential form as

�σ, ε
.
� ≥ ψ

.
 , (2.5)

which proves the equivalence of the formulations of the second law in entropy and entropy-free forms (1.18), (1.19).
Let us define the equilibrium function of the generalized stress as

σ0 (ε): = σ̂ (ε, 0+) , (2.6)

where 0+ is the zero differential history (0+(s) = 0S for s � [0, ∞), 0S is the zero element of S).
We will consider the corollaries following from this postulate for the case of semi-linear constitutive equa-

tions, i.e., Eq. (4.1) of the form

σ (t) = σ0 (ε (t)) + ∫ 
0

∞

R (s) ε
.  t (s) ds , (2.7)

where R(⋅) is the relaxation function determined on [0, ∞) whose values are the linear operators from S into S.
Note that for Eq. (2.7) the equilibrium function of the generalized stress (2.6) is represented by the first term

on the right-hand side of (2.7), which is reflected in the notation.
For constitutive equations of the form of (2.7) the necessary and sufficient conditions for the satisfiability of

the postulate P1 are, as shown in [9–11], the following:
a) there exists a scalar function ϕ(ε) such that

σ0 (ε) = ∂εϕ (ε) ; (2.8)

b) the relaxation function R satisfies the inequality

�[R
__

 (ω) + R
__× (− ω)] a, a∗� ≥ 0 ,   �a � � ,   ω ≥ 0 , (2.9)

where R
__

(ω) is the Fourier transformation of the function R, � is a set of complex numbers, a∗ means a complex-con-
jugate number of a, and the superscript × denotes transposition.
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Note that the limitations imposed on the function R by condition (2.9) are equivalent to the so-called condi-
tion of real positiveness in [12]. The corollary of inequality (2.9) is the following property of the function R (here the
inequality should be understood in the sense of the nonnegative definiteness of the operator):

R (0) ≥ 0 . (2.10)

For the scalar relaxation function, condition (2.9) is reduced to the requirement

R
__

c (ω) ≥ 0 ,   �ω ≥ 0 , (2.11)

where R
__

c(ω) is the Fourier cosine transformation of R.
3. Paradoxes of the Standard Thermodynamic Theory of the Thermal Conductivity of Solid Bodies with

Memory. We will consider a specific physical system, viz., a nondeformable heat-conducting body with memory (case
a) of the three cases considered in Sections 1 and 2. The mathematical model of this system is based on the energy
balance equations (1.6) and constitutive equations for a heat-conducting medium with memory (2.2).

We recall that since

g
_

 (t) = ∫ 
−∞

t

g (s) ds ,

then, according to the definition, the differential history of this variable has the form

g
_.  t

 (s) = g (t − s) . (3.1)

For the linear and isotropic case, Eqs. (2.2) subject to (3.1) are reduced [8, 10] to

e (t) = e0 − cϑ (t) + ∫ 
0

∞

β (s) ϑ
.
 (t − s) ds ,          q = ∫ 

0

∞

α (s) g (t − s) ds , (3.2)

where β and α are the relaxation functions of the internal energy and of the heat flux, respectively.
The necessary and sufficient conditions (2.11) for the satisfiability of the second law in the form of postulate

P1 for this system can be written in the form

α
__

c (ω): = ∫ 
0

∞

α (s) cos (ω s) ds ≥ 0 ,   β
__

c (ω): = ∫ 
0

∞

β (s) cos (ω s) ds ≥ 0 ,   for  all   ω ≥ 0 . (3.3)

Substituting constitutive equations (3.3) into energy balance equation (1.6), we obtain the following equation
of heat conduction with memory:

cϑ
.
 (x, t) − ∫ 

0

∞

β (s) ϑ
..

 (x, t − s) ds = ∫ 
0

∞

α (s) ∇2
 ϑ (x, t − s) ds . (3.4)

It should be noted in passing that due to specially selected independent variables (the inverse absolute tem-
perature and its gradient), this linear equation does not contradict the thermodynamic relations, as it does in the case
of the Gurtin–Pipkin original theory [8].

We will seek the solution of Eq. (3.4) in the form of a plane harmonic attenuating wave:

ϑ (x, t) = ϑ0 + A exp (i (ωt + k (x − x0)⋅n) − ξ (x − x0)⋅n) . (3.5)

It is shown in [2] that such a solution satisfies Eq. (3.4) if the wave attenuation coefficient is expressed as follows:
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ξ (ω) = 
B (ω)

(c − ωβ
__

s (ω)) α
__

c (ω) + ωβ
__

c (ω) α
__

s (ω)
 , (3.6)

where α
__

s and β
__

s are the sine-transformations of functions α and β defined by Eq. (3.3), and B(ω) ≥ 0 is the function
also expressed in terms of α and β. Thus, the attenuation sign is determined by the sign of the denominator in (3.6).
In [2], it was established that there exists a pair of relaxation functions α and β that satisfies the conditions of ther-
modynamic admissibility (3.3), and at the same time leads to the existence of increasing temperature waves (solutions
of Eq. (3.4)) at some frequencies. This is the following pair of functions:

β (s) = β0 exp (− s ⁄ τ) ,   α (s) = 
α0T

 2

s
2  

⎡
⎢
⎣
sin

2
 
⎛
⎜
⎝

s

T

⎞
⎟
⎠
 + sin

2
 
⎛
⎜
⎝

2s

T

⎞
⎟
⎠
 − 2 sin

2
 
⎛
⎜
⎝

3s

2T

⎞
⎟
⎠

⎤
⎥
⎦
 , (3.7)

where β0 > 0; α0 > 0; T, and τ > 0 are constants. It can be shown that restrictions (3.3) for these functions are fulfilled
and at the same time at the frequency ω0 = 1 ⁄ T (as well as in a certain vicinity of it, in view of the continuous de-
pendence of ξ on frequency) the relaxation functions (3.7) lead to a negative expression (3.6), which means an in-
creasing wave solution of Eq. (3.4) at these frequencies. If we take into account the natural viewpoint that increasing
wave solutions must be thermodynamically forbidden, then from this fact it follows that the formulation of the second
law must contain some additional restrictions. Below, one other example that illustrates the urgency of the problem of
additional thermodynamic restrictions will be given.

4. Concerning Increasing Electromagnetic Waves in Dielectrics. We will consider a thermodynamic system
with memory, which is a nonconducting dielectric in the presence of an electromagnetic field. The general theory of
such systems was developed in [5], and it was shown in the previous sections in which way it can be embedded in
the considered generalized thermodynamic formalism. It is based on the energy balance equation (1.9), which accounts
for the terms that describe the contribution of the electromagnetic field to the internal energy; the second law is for-
mulated in the form of the Clausius–Duhem inequality, and the constitutive equations for it in the form of Eq. (2.1),
when expounded in detail, will have the form

e (t) = ê (ϑ (t), E (t), H (t), ϑ
.  t

 E
.  t

, H
.  t) ,   D (t) = D^  (ϑ (t), E (t), H (t), ϑ

.  t
 E
.  t

, H
.  t) ,   

B (t) = B^  (ϑ (t), E (t), H (t), ϑ
.  t

 E
.  t

, H
.  t) , (4.1)

Here, just as before, a circumflex ( ̂ ) above the symbol designates constitutive functionals, and the differential histories
are defined analogously to the corresponding notions in the previous sections.

For a linear isotropic case, in the absence of cross effects, the constitutive equations (4.1) are reduced to the
form [5, 13]

e (t) = e0 − cϑ (t) + ∫ 
0

∞

β (s) ϑ
.
 (t − s) ds ,   D (t) = ζ0E + ∫ 

0

∞

ζ (s) E
.
 (t − s) ds ,

B (t) = μ0H + ∫ 
0

∞

μ (s) H
.
 (t − s) ds . (4.2)

The necessary and sufficient conditions (2.11) of thermodynamic admissibility of relaxation functions in (4.2) (in the
form of the postulate P1 [9–11, 13]) have the form

α
__

c (ω) ≥ 0 ,   ζ
_

c (ω) ≥ 0 ,   μ
__

c (ω) ≥ 0 , (4.3)

where for any function R(⋅): R+ → R, R
__

c(ω) means
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R
__

c (ω): = ∫ 
0

∞

R (s) cos ω sds . (4.4)

We turn now to the Maxwell equations:

rot E = − 
∂B
∂t

 ,   div D = 0 ;   rot H = 
∂D
∂t

 ,   div B = 0 . (4.5)

We supplement this system with two constitutive equations (4.2), which will be written in the following compact form:

D = ζ0E + ζ ∗E ,   B = μ0H + μ∗H , (4.6)

where for  the convolution of the form of ∫ 
0

∞

γ (s)E(t − s)ds the notation γ∗E is used. Equations (4.5) and (4.6) form a

closed system that can be reduced by standard transformations to one equation for one of the characteristics of the
electromagnetic field, say, E. This equation has the form

ΔE + 
1

ζ0

 ζ ∗
 (grad (div E)) = (ζ0 + ζ ∗) (μ0 + μ∗) ∂E

∂t
2 . (4.7)

We will seek the solution of this equation in the form of a plane attenuating transverse harmonic electromagnetic wave
with the attenuation coefficient ξ, wave vector kn, and amplitude E0 (|n| = 1, E0⋅n = 0, since the wave is transverse):

E (x, t) = E0 exp (iω (t − n⋅(x − x0))) exp (− ξn⋅(x − x0)) , (4.8)

where

ω ,   k ≥ 0 . (4.9)

The second term on the left-hand side of Eq. (4.7) for transverse waves disappears, since in this case div E
= 0. Substituting (4.8) into (4.7), we obtain

(ik + ξ)2 = − ω2
 (ζ0 + ξ

_
c (ω) − iζ

_
s (ω)) (μ0 + μ

__
c (ω) − iμ

__
s (ω)) ,

(4.10)

where μ
__

c, μ
__

s, ζ
_

c, and ζ
_

s are the Fourier cosine- and sine-transformations of the functions ζ and μ defined similarly to
(4.4).

Separating in (4.10) the real and imaginary parts, we obtain expressions for ξ:

ξ = 
ω2

2k
 ⎡
⎣
μ
__

s (ω) (ζ0 + ζ
_

c (ω)) + ζ
_

s (ω) (μ0 + μc (ω))⎤⎦
 , (4.11)

whence it is seen that in view of (4.9) the wave attenuation sign is determined by the expression within the squared
brackets in (4.11).

Just as in Section 3, we will consider a pair of relaxation functions ζ and μ that are analogous to (3.7) and
that satisfy the necessary and sufficient conditions of thermodynamic admissibility (4.3):

ζ (s) = εa exp (− s ⁄ τ) ,   μ (s) = μa 
T

 2

s
2  ⎡⎢
⎣
sin

2
 ⎛⎜
⎝

s

T

⎞
⎟
⎠
 + sin

2
 ⎛⎜
⎝

2s

T

⎞
⎟
⎠
 − 2 sin

2
 ⎛⎜
⎝

3s

2T

⎞
⎟
⎠

⎤
⎥
⎦
 . (4.12)

Conditions (4.3) can be easily checked using the Fourier transformation tables [14]. Equation (4.3) should be
supplemented with the inequalities
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ζ0 ≥ 0 ,   μ0 ≥ 0 , (4.13)

which are usually derived in equilibrium thermodynamics from the stability conditions.
Since the thermodynamics does not impose any couplings between μ0 and μ or between ζ0 and ζ, we can se-

lect constants in (4.12) that satisfy the condition

μa > 
1

2
 

ζaμ0τ
ζ0 + ζac1T

 , (4.14)

where

c1 = 
1
4

 ln (3) + 
1
4

 ln (15) − 
1
2

 ln (8) + arctanh ⎛⎜
⎝

1
2
⎞
⎟
⎠
 + 2 arctanh ⎛⎜

⎝
1
2
⎞
⎟
⎠
 = 3 arctanh ⎛⎜

⎝

1
2
⎞
⎟
⎠
 = − 0.068 . (4.15)

Calculating, with the aid of the Fourier transformation tables [14], the attenuation coefficient (4.11) for functions (4.12)

at the frequency ω0 = 
1
T

 , we find

ξ = 
1

2kT
 2 ⎛⎜
⎝
− μa (ζ0 + ζaTc1) + 

1

2
 τζaμ0

⎞
⎟
⎠
 . (4.16)

Taking into account (4.14) and (4.9), we conclude that ξ < 0. This means that at the given frequency (and in its vicin-
ity) increasing electromagnetic waves propagate. Such a situation, just as in the case with temperature waves, seems to
be physically unreal, since here we are dealing with the wave propagating in an initially equilibrium medium. More-
over, in contrast to the case of the media excited out of equilibrium (that enhance electromagnetic radiation), here
there is no increase in the electromagnetic energy flux, and we are dealing only with the increase in the wave ampli-
tude. The possibility of an increase of electromagnetic waves in an equilibrium medium at some frequencies would
have meant electromagnetic instability of an equilibrium state, since part of the spectrum of equilibrium thermal radia-
tion would have started to increase.

This paradox is another argument stimulating the search for additional thermodynamic postulates allowing one
to exclude nonphysical situations.

5. On Additional Thermodynamic Restrictions. If we accept the natural viewpoint that the paradoxes de-
scribed in the previous sections must be forbidden thermodynamically, then it follows from such results that a standard
set of thermodynamic restrictions is insufficient. Consequently, it becomes urgent to seek additional thermodynamic
postulates ensuring new restrictions of constitutive equations to exclude nonphysical situations.

In this Section we consider a possible variant of such a postulate making it possible to advance in the solu-
tion of the above-considered problems.

We will require that the considered thermodynamic system, apart from the postulate P1, satisfy an additional
postulate formulated as follows:

P2. For any κ < 0 one can find δ > 0 such that for all trajectories ε(⋅) and time moments t1, t2 such that

⎡
⎣⏐ε (t2) − ε (t1)⏐

2
 + ⏐⏐ ε

.  t2 − ε
.  t1⏐⏐

 2⎤
⎦

1 ⁄ 2
 ≤ δ ,

(5.1)

the following inequality holds:

∫ 
t1

t2

� d
dt

 [σ̂ (ε (t), ε
.  t) − σ0

 (ε (t))], ε
.
 (t)� dt ≥ − κ . (5.2)

To study the corollaries following from this postulate, we will restrict ourselves, as above, to consideration of
the case of semi-linear constitutive equation, i.e., equation of the form of (2.7).
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We will consider what additional restrictions are introduced by postulate P2. Substituting (2.7) into (5.2), we
have

∫ 
t1

t2

� ∫ 
0

∞

R (s) ε
.. t

 (s) ds, ε
.
 (t)� dt ≥ − κ . (5.3)

With the aid of integration by parts, (5.3) can be represented as

∫ 
t1

t2

�
⎛
⎜
⎝

⎜
⎜
 R (0 ε

.
 (t) + ∫ 

0

∞

R′ (s) ε
.  t

 (s) ds
⎞
⎟
⎠

⎟
⎟
 , ε
.
 (t)� dt > − κ , (5.4)

which corresponds to inequality (5.2) in postulate P2 for the case considered (we recall that the prime here means de-
rivative with respect to s, and a dot above a symbol means derivative with respect to t).

We can prove the following necessary and efficient condition of the satisfiability of postulate P2 for semil-
inear systems.

Theorem 1. In order that postulate P2 be fulfilled for systems given by constitutive equation (2.7), it is nec-
essary and sufficient that for any restricted integrable functions u: � → S with a carrier limited on the left, the func-
tion R(⋅) satisfy the inequality

∫ 
−∞

t

�R (0) u (τ), u (τ)� dτ + ∫ 
−∞

t

 ∫ 
−∞

τ

�R′u (τ − s) u (s), u (τ)� dsdτ ≥ 0 . (5.5)

The proof of this theorem turns out to be an obvious modification of the proof of the basic theorem in [11]
with account for properties (2.10) satisfied by virtue of the postulate P1.

As is seen from the results of [11, 12], property (5.5) is equivalent to

�[R
__
′  (ω) + R

__
′×   (− ω) + R (0)] a, a

∗� ≥ 0 ,   �a � � ,   ω ≥ 0 . (5.6)

Here R
__
′(ω) means the Fourier-transformation of R′(s), R

__
′(ω) = R

__
c′ (ω) + iR

__
s′ (ω), where R

__
c′ (ω) and R

__
s′ (ω) are the co-

sine- and sine-Fourier transformations of this function, respectively.
For the case of scalar functions R (5.6) is reduced to

R
__

c
′ (ω) + R (0) ≥ 0 ,   �ω ≥ 0 .

(5.7)

With the aid of integration by parts, the latter inequality can be reduced to the form

R
__

s ≥ 0 . (5.8)

The next assertion demonstrates that the postulates P1 and P2 are not contradictory, i.e., there exist objects
satisfying both postulates. Such objects are represented, for example, by relaxation thermodynamic systems. We recall
that a thermodynamic system with memory is called a relaxation one (analogously to a dynamic system (see [12])) if
its relaxation function has the form

R (s) = ∑ 
i=1

n

Ri exp (λis) , (5.9)

where λn < λn−1 < ... < λ1 ≤ 0, Ri = Ri
×  = Ri > 0, �i = 1, 2, ..., n.
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Assertion 1. Semilinear relaxation thermodynamic systems with σ0, determined according to (5.10), satisfy the
postulates P1 and P2.

This assertion is proved by direct checking with the aid of Fourier transformation tables [14] and of inequali-
ties (2.11) and (5.7) for a relaxation function of the form of (5.9).

The obtained additional restrictions following from postulate P2, together with the standard restrictions of pos-
tulate P1, allow one, as will be seen below, to advance in the solution of the problems of increasing waves. This is
one of the justifications of the new postulate. A further justification is that the given assumption has, as we will show
now, direct analogs within the framework of the thermodynamics of irreversible processes developed by I. Prigogine’s
school [4].

Note that from postulate P2, analogously to the case of P1, there follows the existence of thermodynamic po-
tential Φ such that, by analogy with (5.5), the following inequality holds:

�σ
.
, ε
.
� − �σ

. 0, ε
.
� ≥ Φ

.
 . (5.10)

Since the potentials ψ and Φ are determined by the same thermodynamic system, it is evident that there must exist a
coupling between them. We will establish it for the case of the so-called central potential for relaxation systems (5.9),
which in concrete applications corresponds to the standard thermodynamic potential.

According to relation (3.24) from [15] (see also [16]), the central thermodynamic potential ψ in our case is
expressed as follows:

ψ (ε (t), ε
.
 (t)) = ϕ (ε (t)) + 12 ∫ 

0

∞

 ∫ 
0

∞

�R (τ + s) ε
.  t (τ), ε

.  t (s)� dτds . (5.11)

The central potential in the family of potentials Φ is constructed analogously:

Φ (ε
.  t) = 12 ∫ 

0

∞

 ∫ 
0

∞

�R′ (τ + s) ε
.  t (τ), ε

.  t (s)� dτds . (5.12)

Based on expression (5.11) and inequality (5.5), we now calculate the production Σ of the potential ψ (which
in concrete applications is usually the entropy production). Since the production of a potential is a source that supple-
ments inequality (2.5) up to a balance, then Σ is defined as

Σ: = �σ, ε
.  t� − ψ

.
 = �

⎡
⎢
⎣

⎢
⎢
σ0 (ε (t)) + ∫ 

0

∞

R (s) ε
.
 (t − s) ds

⎤
⎥
⎦

⎥
⎥
, ε
.
 (t)� 

− d
dt 

⎡
⎢
⎣

⎢
⎢
ϕ (ε (t)) + ∫ 

0

∞

 ∫ 
0

∞

�R (τ + s) ε
.  t (τ), ε

.  t (s)� dτds
⎤
⎥
⎦

⎥
⎥
 

= �σ0 (ε (t)), ε
.
� + � ∫ 

0

∞

R (s) ε
.
 (t − s) ds, ε

.
 (t)� − �∂εϕ (ε (t)), ε

.
 (t)� 

− 12 ∫ 
0

∞

 ∫ 
0

∞

�R (τ + s) ε
.. t (τ), ε

.  t (s)� dτds − 12 ∫ 
0

∞

 ∫ 
0

∞

�R (τ + s) ε
.  t (τ), ε

.. t (s)� dτds . (5.13)

Taking into account relation (5.10) on the right-hand side of (5.13), using the symmetry of the function R
(see (5.9)), and integrating by parts, we reduce (5.13) to the form

725



Σ = 12 ∫ 
0

∞

 ∫ 
0

∞

�R′ (τ + s) ε
.  t (τ), ε

.  t (s)� dtds . (5.14)

Comparing (5.12) and (5.14), we come to the conclusion that the additional thermodynamic potential, whose
existence follows from the supplementary postulate P2, is nothing else but the production of the classical thermody-
namic potential (for typical cases this is the entropy production). This result correlates well with the ideas developed
by I. Prigogine with co-authors in the works where he introduces the so-called dissipation potential [4].

6. Corollaries from the Supplementary Thermodynamic Postulate. We turn again to the thermodynamic
system considered in Section 4. According to (4.11), the attenuation of harmonic electromagnetic waves in such a sys-
tem is expressed as

ξ (ω) = ω
2

2k  ⎡
⎣
μ
__

s (ω) (ζ0 + ζ
_

c (ω)) + ζ
_

s (ω) (μ0 + μc (ω))⎤⎦
 . (6.1)

The restrictions following from postulate P1 (4.13) for relaxation functions are

ζ
_

c (ω) ≥ 0 ,   μ
__

c (ω) ≥ 0 . (6.2)

To this, we add the inequalities that are substantiated in equilibrium thermodynamics from the requirement of stability
of the equilibrium state:

μ0 ≥ 0 ,   ζ0 ≥ 0 . (6.3)

If we require the fulfillment of postulate P2 relative to this system, we will obtain the following additional
restrictions of relation functions (compare with (6.2)):

ζ
_

s (ω) ≥ 0 ,   μ
__

s (ω) ≥ 0 . (6.4)

Allowing for inequalities (6.2)–(6.4) in relation (6.1), we obtain the inequality

ξ (ω) ≥ 0 . (6.5)

Consequently, the following assertion 2 has been proved.
Assertion 2. If a thermodynamic system representing a medium given by constitutive equations (4.2) satisfies

postulates P1 and P2, then the increasing electromagnetic waves are forbidden in an equilibrium medium.
Thus, postulate P2, in addition to the arguments given at the end of the previous section, can be motivated

also by the fact that one can also eliminate the paradox of increasing electromagnetic waves. This postulate also ex-
cludes the counterexample leading to increasing temperature waves considered in Section 3, since it can be easily
checked [14] that the relaxation function α(s) in (3.7) does not satisfy the requirement (5.8) following from P2.

Conclusions. Thus, the results of the present work allow us to make the conclusion that in the modern ther-
modynamic theory of locally nonequilibrium systems there are difficulties connected with the fact that it admits the ex-
istence of increasing temperature and electromagnetic waves. At the same time, these difficulties can be overcome if
along with the well-known thermodynamic postulate on the property of having a fixed sign for the heat integral reduced
by the inverse absolute temperature, in any cyclic process of thermodynamic action one postulates the requirement of a
fixed sign in any cyclic process of a new thermodynamic action. The physical sense of this new thermodynamic action
can be interpreted as the difference of integrals of heat reduced by the rate of change of the inverse temperature in
nonequilibrium and equilibrium processes with an identical trajectory. The new postulate also entails the existence of a
new thermodynamic potential in many respects analogous to the Prigogine dissipation potential.
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NOTATION

A, ϑ0, amplitude and reference temperature of a thermal wave; a, arbitrary complex number; a1, a2, arbitrary
vectors; �, set of complex numbers; c1, constant defined in (4.15); D, B, electric and magnetic induction, respectively;
E, H, strength of electric and magnetic field, respectively; E0, amplitude of electromagnetic wave; �, three-dimen-
sional Euclidean vector space; e, specific internal energy; e0, reference value of internal energy; F, tensor of strain
gradient; g, gradient of inverse temperature; g

_
, integral gradient of inverse temperature; �, set of differential histories;

k, wave number of thermal and electromagnetic waves; �(�), space of three-dimensional tensors of second rank; n,
unit vector; Q, quantity of heat received by the system by the current moment; q, heat flux vector; q^ , e^ , constitutive
functionals of the heat flux and internal energy; r, internal heat release per unit mass; R, generalized relaxation func-
tion; R, scalar relaxation function; �, set of real numbers; S1, S2, entropy of the system in the initial and final state;
S, tensor of the Piola–Kirchhoff stress tensor; S, configurational space; s, moments related to the past relative to the
current moment; T1, T2, arbitrary tensors; t, t1, t2, arbitrary time instants; x0, fixed point; α, β, relaxation functions
of internal energy and of heat flux, respectively; α

__
s, β

__
s, sine-transformations of functions α and β; α0, β0, T, and τ,

constants determining relaxation functions (3.7); γ, γ1, γ2, arbitrary elements from S; δ, κ, scalar parameters; ε, gen-
eralized configuration; η, specific entropy; θ, absolute temperature; ϑ, inverse absolute temperature; ϑ

.
t, differential his-

tory of inverse temperature; λi, Ri, parameters determining the relaxation function (5.9); μ0, ζ0, equilibrium magnetic
and electric permeabilities, respectively, with μ and ζ being the relaxation functions expressing the relaxation part of
permeabilities; μ

__
c, μ

__
s, ζ

_
c, ζ

_
s, cosine- and sine Fourier transformations of functions μ and ζ; ξ, attenuation of thermal

and electromagnetic waves; ρ, density of a medium; ζa, μa, T, τ, constants determining relaxation functions (4.12);
σ, generalized stress; σ0, equilibrium generalized stress; χ, influence function; ψ, Φ, thermodynamic potentials; ψ^ ,
constitutive functional for thermodynamic potential ψ; ω, frequency of thermal and electromagnetic waves; ω0, char-
acteristic frequency. Subscripts and superscripts: 0, characteristic value; 1, initial state; 2, final state; t, history up to
moment t; a, amplitude value.
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